Perfor mance M odeling and M easurement of Par allelized
Codefor Distributed Shared Memory M ultiprocessors

Abdul Waheed and Jerryari'
NAS Technical Report NS-98-012 March 1998

{waheed,yan}@nas.nasa.gov
NAS PRarallel Tools Group
NASA Ames Research Center
Mail Stop T27A-2
Moffett Field, CA 94035-1000

Abstract

This paper presentsa model to evaluate the performanceand overhead of

parallelizing sequentialcode using compiler directivesfor multiprocessingon

distributed shaed memory(DSM) systemsWith increasingpopularity of shated

address space architectues, it is essentialto undestand their performance
impacton programsthat benefitfrom shared memorymultiprocessing\We present
a simplemodelto characterizethe performanceof programsthat are parallelized

usingcompilerdirectivesfor shared memorymultiprocessing\\e parallelizedthe

sequentialimplementatiorof NAS bendimarksusing native Fortran77 compiler
directivesfor an Origin2000,which is a DSM systenbasedon a cade-coheent

Non Uniform Memory Access(ccNUMA) architectue. We report measuement
based performanceof these parallelized bendimarks from four perspectives:
efficacy of parallelization process; scalability; parallelization overhead; and

comparison with hand-paallelized and -optimized version of the same
bendimarks.Our resultsindicate that sequentialprograms can corvenientlybe

parallelizedfor DSMsystemsisingcompilerdirectivesbut realizingperformance
gains as predictedby the performancemodeldependsprimarily on minimizing

architecture-specific data localitywerhead.

t Both authors are employees of MR] Technology Solutions, Inc., NASA Contract NAS2-
14303, Moffett Field, CA 94035-1000

1 Introduction

Distribute SharedMemory (DSM) systemsarebecomingpopularin high performanceomputingbecause
they offer easeof programmingdueto a global addressspaceand scalabilityto large numberof nodes.
Although DSM systemdfacilitate programming they can potentially introduceperformancebottlenecks
that requireadditionaleffort on the part of a userto discover and eliminate[20]. Non Uniform Memory
Access(NUMA) architecturesanincur ordersof magnitudegreaterlatenciesto accesslatathat reside
fartherfrom the processoin memoryhierarcly [11]. Thesesystemsoften use cache-basedommodity
processowith cachecoherencémplementedn hardwareto hide lateng. Memory traffic generatedy
protocolsthatkeepthe cachesoherenis anothermpotentialsourceof performancelegradation While the
developersof compilationand parallelizationtools for sharedmemory systemshave addressedomeof
these problems, extensve user input is still requiredto fully benefit from thesetools [2,3,10,16].
Understandindhe source=f parallelismin a programand potentialoverheaddueto subtletiesof a DSM

architecture is essential fofeftively using these systems.

Dueto the growing disparity betweenprocessoand memoryspeedstool developershave beenfocusing
on measurement-basddols to analyzememory performance Several state-of-the-armicroprocessors
provide on-chipperformanceounterdo facilitatethesemeasuremen{20]. However, mostof the existing
toolsandtechniquesarelimited to evaluatingcacheandmemoryperformancdor a singleprocessof19].
Thesetools typically do not directly addressmultiprocessormemory performanceissues.There are
examplesof researclprototypeDSM systemghatcansupportmemoryperformanceneasurementscross
multiprocessornodes [7]. Unfortunately such tools are not yet widely available for commercial
multiprocessorsWe presenta performancemodel that accountsfor inherentparallelismin a program,
which canresultin potentialspeeduaswell asoverheadvhenthatprogramis executedona DSM system.
This modelcanbe usedto analyzethe efficacy of parallelizationandquantitatvely measurehe overhead
of parallelizing a program. Quantitatve evaluation of this overheadprovides an indirect measureof

effective utilization of &ailable memory subsystem performance.

In this paper we presenta performancenodelto characterizeéhe executionof a compilerdirectves-based
parallelizedprogram.We subsequenthapply this modelto evaluatethe performanceof our parallelized
versionof NAS benchmarkon SGI Origin2000,which is a commercialDSM systemwith a ccNUMA

architectureEachnodeof the systemconsistof two MIPS R10000processorsvith two levelsof separate

dataandinstructioncachedor eachprocessorand4GB of main memorysharecbetweerntwo processors

on a node.Multiple systemnodesare connectedn a hypercubetopologythrougha high speednetwork.
We usednative tools to parallelizedthe sequentiaimplementationof NPBs [14]. Thesetools include:
Power Fortran Acceleator (PFA), which canautomaticallyinsert parallelizationdirectvesin sequential
code and transformthe loops to enhanceheir performanceParallel AnalyzerView (PAV), which can
annotateheresultsof dependencanalysisof PFA andpresenthemgraphically;andFortran77compiler
with MP runtime library to compile and executedthe parallelizedcode[13]. In additionto usingthese

tools, we inserted some direaiby hand to assist the compiler and imprthe performance.

We explainthedirectives-basegarallelizatiornparadigmin Section2. A performancenodelandmetricsto
evaluatedifferentaspectof a directives-basegbarallelizedprogramare presentedn Section3. Section4
reportsdetailedmeasuremenbasedevaluation of the parallelizedNAS benchmarksausing performance
modelandmetricsof Section2. We briefly survey therelatedresearcleffortsin Section5 andconcludein

Section 6.

2 Compiler-Directed Parallelism

Compilerdirectedparallelismhasbeentraditionally usedfor vectorsupercomputerst hasrecentlystarted
attractingattentionof mainstreamvendorsdue to increasingpopularity of Symmetric Multiprocessing
(SMP) systems. Parallelization directives can be inserted in legacy sequential code to tap the
multiprocessingpotentialof anSMP architectureThesedirectivesarein theform of specialcommentghat
areignoredby a compiler without appropriatemultiprocessindglag. Thus, thereis no needto maintain
separatsequentiabndparallelizedversionsof the samecode.Thereis anongoingeffort of standardizing

these directies to port programs acrossfdient SMP platforms [15].

Potentialparallelismof a DSM systemcanbeexploitedin oneof threeways:message-passingseof data-
parallellanguagesor compilerdirectedmultiprocessingMessae-passingrovidesthe userwith explicit
controlover communicatiorandsynchronizationshroughcommonlyusedmessage-passitigpraries[12].
Data-parallel programminglanguagesallow the usersto write SPMD programswithout explicit message-
passingwhich is handledby the compilerandits runtime system.The main sourceof parallelismis the
programdata, which can be distributed amongdifferent processorghrough compiler directives. High
Performancd-ortran (HPF [6]) is a standardor thesedirectivesthat have beenusedby several compiler
developers Both message-passiranddata-parallelisnforce a userto develop a parallelalgorithm,which

is a challengingtask.Dueto the simplicity of programmingsharednemorysystemscompilerdevelopers

have beeninvestigating different techniquesto exploit parallelismdirectly by the compilersfor such
systemsThis procesanbe accomplishedutomaticallywith a compileror throughsomehints provided

by the user to the compiler [15].

Beforeinsertingcompilerdirectivesin sequentiatode, onehasto identify partsof the programthatcanbe
parallelizedwithout affecting the correctnessThe mainsourceof parallelismis the loopswhoseiterations
canbe scheduledn multiple processorsvithout ary dataaccesslependencer conflictsamongdifferent
iterations.This requiresdependencanalysisfor every loop nestof sourcecode.For agivenloop nest,it is

customaryto parallelizethe outermostloop to have significantwork for eachset of iterationsthat are
schedulean multiple processorsTheusermayhave to modify someloop nestdo resole dependencesn

theoutermostloopindex to parallelizetheloop. If therearedatadependenciesetweerdifferentiterations
of theouterloop, parallelizations inhibitedto presere correctnessf theprogram As illustratedin Figure
1, this parallelizationis an iterative processwhich continuesuntil mostof the loops contrikuting to the
overall executiontime are parallelized.Finally, the parallelizedcodeis compiledand linked using with

appropriate runtime libraries taecute on a tget multiprocessor

Directive
insertions

Code
modifications as
needed

— » Parallel code for

Sequential code an SMP system

Performance
evaluation

A

Figure 1. General methodology of parallelizing sequential code using compiler directivesfor shared
memory multiprocessing.

Comparedto the process-leel parallelismfor message-passingrograms,directive-basedparallelism
constitutesa finergrained, loop-level parallelism. Figure 2 provides an example of this parallelism
implementedthrough MIPS Fortran compiler directives for multiprocessing13]. The C$DQACROSS
directive instructsthe compilerto divide the outerloop iterationsequallyamongthe available processors.
This is the default loop scheduling,which is implementedby the runtime systemuntil specifically
instructedotherwiseby additionalcompilerdirectives.Datadistribution directive, C3DISTRIBUTE works
at the level of memory pagesrather than array elementsin data-parallellanguages.Thus, the data

distribution is relatvely coarse-grain.

Directives-basegbarallelismis supportedoy the MP runtimelibrary on Origin2000,which implementsa

integer i, j, k

double precision temp

double precision a(256,256,256), b(256,256,256
c$distrilute a(*,*,BLOCK)
c$distrilute b(*,*,BLOCK)
c$doacross local(k,j,i,temp)

dok=1, 254
doj=0, 255
doi=1, 255

tmp = 1.0d+00 / a(i,j,k)
b(i,j,k) = a(i,j,k) * tmp
enddo
enddo
enddo

Figure 2. An example of instruction-level parallelism using MipsPro Fortran77 compiler directives for
multiprocessing.

fork-and-join paradigmof parallelism.A masterthread initiates the program, createsmultiple slave
threads scheduleghe iterationsof parallelizedloops on all the threadsincluding itself, waits for the
completionof aparallelloop by all theslave threadsandexecutessequentiapotionsof the program Slave
threadswait for work (i.e., for partsof parallelloops)whenthe masterthreadexecutesa sequentiaportion
of thecode.Figure3 representthis runtimesystemgraphically Clearly, the maindisadwantageof thistype

of parallelism is theverhead to synchronize téfent threads thakecute diferent iterations of a loop.

Consideringeaseof programminggdirectives-basegarallelismhasclearadvantage®ver message-passing
anddata-parallelismHowever, performancempactof usingthis programmingstyleona DSM systenis a
relatively unexploredarea.We focuson performancesvaluationof directves-basegbarallelizedprograms

in subsequent sections.

3 Peformance Model and Metrics

Comparedo message-passirand data-parallelismgcompilerdirectedparallelismis comparatiely fine-
grained.Parallelismis discoreredfrom theloopsin sequentiaprogramwhoseiterationscanbe scheduled
on multiple processorsilt is simplerto quantify the amountof parallelismthat hasbeendiscoveredin a
directives-basedparallelized program. Based on these initial measurementswe can estimate the
performancewith multiple processorsinderideal conditionsof utilization. We use theseestimatesto
guantifythe overheadof directives-basegarallelizationtechniqueghatis otherwisehiddenfrom the user

This analysishelpsthe userto decidewhetheror not a locality optimizationeffort will be useful.We first

Master thread

|

Execute
Slave thread sequential Slave thread
portion
v
Wait for “Schedule Wait for
work iterations in work
allel
v v

Execute
scheduled
iterations

scheduled
iterations

Synch. with
master

Synch. with
master

A 4

Wait for
work

Execute
sequential
portion

Figure 3. Execution of a parallel loop using fork-and-join paradigm with threethreads.

explain the performancemodel with respectto DSM system architecturethat we are focusing on.

Subsequentlywe define metrics tovaluate parallelization and scalability of the parallelized code.

3.1 Performance M odel

Considera sequentiaprogramconsistingof N blocks, suchthat only oneblock is executedat ary time.
Unlessotherwiseindicated,we shall usethe term block interchangeablwvith subioutine This is true for
mostof the programsdevelopedin a structuredmanner The sequentialexecutiontime of the programis

denoted bylg and is calculated as:

Ts= 24 (1)

wheret; is the executiontime spentin thei-th block. We have to measurehe aggreatetime spentin every
block of the codethatsubstantiallycontritutestowardthe overall sequentiabxecutiontime. Thereforewe

define thesequential coslior executing tha-th block as a fraction:

SC, = =. 2

When a programis executedin parallel using fork-and-join paradigm, synchronizationoverheadis

incurredby slave threadgto wait for parallelwork andby the masterthreadto wait for all the slave threads
to finish executinga particularparallelloop. The executiontime of a directives-basegarallelizedorogram
is denoted by, and is gien by:
N N N N
To= Yttty = S (it +t, = S tp+ ts+t,, (3)
i=1 i=1 i=1 i=1

wherethe (useful)executiontime spentin thei-th block (t;) is the sumof time spentin parallelizedoopsof
thatblock (tp;) andtheremainingsequentiatodeof thatblock (ts)). Parallelizationoverheadfor theentire
programis given by t, becausat is non-triial to measuret for eachindividual parallelizedblock of the
programusing profiling. Consideringthe architectureof a ccNUMA-basedDSM system parallelization

overhead is an intricate function of foNing factors:

. aggre@ate synchronization time between threads durieg@ion of a parallelized program;

. number of parallel loops;

1
2
3. aggraate load imbalance between threads durkegetion of a parallelized program;
4. non-local memory accesses by each thread; and

5

. resource contention between a thread and other users on the system.

While thefirst four factorsmay not changefrom oneexecutionto anotheythe resourcecontentiondueto
otherusersof the systemaffectsin anunpredictablenanner Sincedirectves-basegbarallelizedprograms
rely on accesgo shareddatastructuresfor synchronizatioras well as computationgequiring non-local
data, they are particularly susceptibleto the contentionfrom other users.Quantitatve calculation of

parallelization gerhead and other metrics are presented in thenfolipsubsection.

3.2 Performance Metrics

Considerthat a subrouting in the programhasK parallelizedloops. Thenwe definethe metric parallel

coverage of subrouting as:

K

5w
—i=1
PC; = 5. 4)

Note that parallel coverageof a subroutinecan be determinedby profiling the executionof a sequential
program.Thistechniquds oftenusedto determinghefractionof codethatcanbe executedn parallel[4].
The total parallel coverageof a parallelizedprogramis equalto the sum of parallel coveragesof all

subroutinesn the program.If thereareL subroutinesn a program thenthe parallelcoverageof the entire

program is calculated as:

PC = i PC; . (5)
i=1
A valueof PCcloseto 1.0 (or 100%,if expressedisa percentagevill beanidealvaluefor a parallelized
programindicatingthatthereis no sequentiacodeandno parallelizationoverhead.Therefore gxecuting
sucha programon n processorshouldresultin a speedumf n, providedthatall the processorarefully

utilized duringthe entireexecution.A highervalueof this metricis desirablebecausdt represents better

parallelization of sequential code.

Amdahl’s law basedon fixed workload can be usedas a measureof scalability of the parallelizedcode
under fork-and-join execution model. According to Amdahl’s law if a is the sequentialfraction of a
program, the maximum possible speedup that can be obtainechg@r@ressor system isvgin by:

1 _ n
1ma Tra(nD) ©)

n

Sn:

wherea is thefraction of serialportionof the code.Noting thatparallelcoveragePC=1-a, we canexpress
ideal speedup according to Amdahiw as:
=N 7)
Sh = PC+n(1-PC)"
Using this definition of theoreticalspeedupwe cannow calculatethe combinedvalue of parallelization

overhead as:

N
y= Tp= 3 (tpy+ts) = Ty=3(PC+n(L-PC)) ®
i=1

whereT, is the measuredkecution time om processors.

Parallel coverageand speedupmetrics definedby equations(5) and (7), respectrely for independent
assessmernmtf a directives-basegarallelizedorogram.In orderto comparehe performancef a directive-
basedparallelized programwith the same program parallelizedusing a different technique,we use
executiontime asa metric. Additionally, equation(8) will be usedfor evaluatingparallelizationoverhead

for directves-based parallelized programs.

4 Performance Evaluation

Performanceis evaluated from three perspecties: efficacy of parallelization process;scalability of
parallelizedprograms;and performancecomparisorof directives-basegbarallelizedprogramagainstthe

hand-parallelized and optimized code. The metrics discussed in Section 3.2 are usedvimluttiere

4.1 Analysisof Parallelization

Parallel coverageis definedin Section3.2 asa metricto representhe efficacy of parallelizationprocess.
This metric was calculatedfor all NAS benchmarksparallelizedusing compiler directives for shared
memory multiprocessingFor thesecalculations,the benchmarksare compiled with instrumentatiorto
measurehetime spentin eachsubroutinghatcontaingarallelcodeblocks.We executetheseprogramson

a single processor of Origin2000.

Table 1 presentsdetailed measurementgelated to parallel coverage obtained in BT. Sequential
implementatiorof BT containsa numberof modularsubroutineshatsolve Navier-Stokesequationaising
a Block Tridiagonalalgorithms.An inspectionof thesesubroutinesndicatesthat mostof this algorithm
containssufiicient parallelism.Quantitatvely, thesemeasurementmdicatethat the coderesponsibleor
more than 99% of the entire executiontime is parallelized.This level of parallelismwas attainedafter
iteratively analyzingthe sourcecodeanddiscovering possibilitiesof parallelizationby minor modifications

in some loop nests.

The samemeasuremenprocedurewas repeatedto calculateparallel coveragesfor FT, CG, and MG
benchmarksA summaryof thesecalculationss reportedin Table2. Unlike BT, we relied on native SGI
tools (PFA and PAV) to parallelizethesebenchmarksFurthermorewe hadto manually performinter-
procedural analysis to parallelize avfanportant loops in FT

Table 2. Parallel coverage of FT, CG, and MG benchmarks.

Execution
timefor
Execution parallelblocks | Parallel
Benchmark time (sec) (sec) Coverage (%)
FT 203.70 200.15 98.26
CG 50.65 48.49 95.75
MG 96.93 90.56 93.43

The resultsshavn in Table 2 suggesthat 93%—-99%of the codeis parallelized.lt shouldbe notedthat

Table 1. Parallelization statistics obtained from measurements of BT on an Origin2000 node.
Sequential cost and parallel coverageisexpressed as a percentage of total execution time, which is
2723.96 sec for this particular execution.

Execution
Sequential time for
Subroutineswith overall time parallel blocks | Sequential Parallel
parallelized code (sec) (sec) Cost (%) Coverage (%)
add 19.05 19.05 0.69 0.69
rhs_norm 0.13 0.13 0 0
exact_rhs 2.31 0.83 0.08 0.03
initialize 6.17 0.19 0.22 0
Ihsinit 2.35 2.34 0.08 0.08
Ihsx 357.80 357.80 13.79 13.79
Ihsy 375.06 375.00 13.76 13.76
Ihsz 453.21 453.20 16.63 16.63
compute_rhs 272.46 272.45 10.00 10.00
X_backsubstitute 103.75 103.75 3.80 3.80
x_solve_cell 304.49 304.48 11.17 11.17
y_backsubstitute 106.87 106.40 3.92 3.90
y_solve_cell 306.06 306.00 11.23 11.23
z_backsubstitute 106.87 106.80 3.92 3.92
z_solve_cell 307.25 307.10 11.28 11.27
Total 2723.80 2715.50 99.99 99.69

whena programis 100%parallelizeda linear speedugould be obtainedprovided thatall the processors
areequallyutilized throughouthe execution.This theoreticakpeedupvill beusedasa criteriato evaluate

the actual performance of parallelized code in theviolig subsections.

4.2 Analysisof Scalability

Figure 4 presentghe scalability characteristic®f the four parallelizedbenchmarksThe ideal execution
time values are calculatedassuminga linear speedupfrom sequentialexecution times. Theoretical
executiontime valuesaredeterminedaccordingto speedumbtainedirom equation(8) in Section3.2. The
speedups lessthanideal or theoreticalvaluesfor BT andFT. However, CG andMG exhibit closeto ideal
speedupvalues.BT and FT are relatively larger programscomparedto CG and MG. Additionally,
algorithmsfor BT andFT dependon a regular patternof dataaccessegvhich is not the casefor CG and
MG [5]. Lack of structured data accesseshelps loop-level parallelization paradigm by reducing
parallelizationoverheadunlike message-passiray data-parallelismTherefore BT andFT aresusceptible
to overheaddueto datalocality aswell assynchronizationSincetheseoverheadarenot significantfor CG

andMG dueto their structureaswell assmallernumberof parallelizedoops,the speedujs closeto ideal.

11

In fact, CG andMG shaw betterthanidealspeedugor somenumberof processorsThis is notunusuafor
acache-baseDSM systemldealor theoreticakpeedups determinedvith respecto sequentiabxecution
time, which is constrainedy the amountof datathat canbe keptin cachesWith computationand data
distributed on multiple cache-basegrocessorof Origin2000, the effective cachesize also increases

resulting in higher thanxpected speedup for someeeutions of CG and MG.

- — — - ldeal
— - — Theoretical
Measured
3000 T T T T T T 140
. 2500F — 2or
2 2
~ \‘0/ 100
O 2000 (]
£ =
=] =
c = 80
g 1500 g
3
8] 8 60
(] (]
X X
L 1000 nj
40
500 -
20
O
0 . Bt e sttt TP 0
0 10 20 30 40 50 60 70 0 5 10 15 20 25 30 35
Number of processors Number of processors
(a) BT (b) FT
50 T T T T T T T 80
45
70F
O 40+)
% g o
~ 351 —
Q]
£ ol E =
c c
Q9 st 9O wp
= =
) 3
S 20+ 9
§<J Q 30
i i
151
20
10r
10F
sl
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Number of processors Number of processors
(c) CG (d) MG

Figure 4. Scalability characteristics of directives-based parallelized programs and their comparisons
with ideal and theoretical speedup.

Basedon the resultsof scalability measurementst canbe obsered that speedupcloseto the ideal and
theoreticalvaluesare attainableby parallelizingprogramsusing directves-base@pproachHowever, the
differencedrom the expectedtheoreticalvaluesof speedushouldbe expectedor largerapplicationswith
regular dataaccessedn thosecasesgcarefuldatadistribution becomesmportantto obtain high speedup
values.In fact, mary argue in favor of using fine-graineddata distributions, similar to thoseusedin

message-passimgogramsjn conjunctionwith sharedmemorymultiprocessinglirectivesto leveragethe

12

benefits of both paradigms.

4.3 Parallelization Over head

Measuremenbasedesultspresentedh Sectiord.2indicatethatparallelizationoverheads inevitableeven
whenthe performances closeto ideal. The overheadstemfrom the cache-baseBSM architectureaswell
as excessve synchronizationto supportloop-level parallelizationat the runtime. In orderto put these
overheadin proper perspectie, we first presentthe measuredvalues of parallelizationoverheadfor
directives-basedparallelizedimplementationof NAS benchmarksin Section4.3.1. Then we analyze

synchronization werhead using a synthetic loop nest in Section 4.3.2.

4.3.1 Measurement of Paralléelization Over head

Comparedto FT, CG, and MG, considerablymore time was spenton BT to analyzeand tune its
performance.Speedupcharacteristicsof BT basedsolely on its parallelization did not shov ary
appreciablereductionin executiontime with increasingnumberof processorsven with closeto ideal
parallelcoverageasdiscussedn Section4.1. This is dueto the overheadof accessinglatanot foundin
cachesr local memory Therefore all parallelizedloopswerere-examinedandadditionaldirectivesthat
enabledatadistribution at the granularityof pagesof memorywereinserted.This resultedin significant
performancamprovementcomparedo its initial unoptimizedimplementationAs shovn in Figure4(a),
parallelizationoverheads smallasaresultof additionaldatadistribution directives.However, aswe know
from the speedupcharacteristiceof CG and MG, closeto ideal speedugs attainableby remaving data
locality overheadsuchthat mostof the dataaccesseare limited to the first level cachesWe first try to

assess the quantitegivalue of this werhead for BT using equation (8).

Table 3 lists the ideal, theoretical,and measuredexecution times for BT using multiple processors.
Parallelization overheadis presentedas a percentageof measuredexecutiontime. Clearly, the actual
speedups lower thanthe expectedheoreticamaximumvaluefor any numberof processordNotethatthe
parallelizationoverheadcontinuego increasewith the numberof processorandaccountdor about75%
of the total execution time with 64 processorsThis behaior is an indication of non-optimal data
placementhat resultsin non-localdataaccesseaswell ascachecoherencdraffic. As we mentionedin
Section3.1, it is difficult to quantify the parallelizationoverheaddue to a numberof factorsthat can
potentiallyaggraateit. Althoughthe measurementsresentedn Table3 suggesthatthe bottleneckcould

bedueto datalocality overheadit is practicallyimpossibleto isolateits quantitatve contritutionto overall

13

overhead due to otheadtors including synchronization and resource contention.

Table 3. Calculation of parallelization overhead of BT on on arange of 1 to 64 nodes of Origin2000.

Ideal Theoretical Measured
Number of execution time | execution time execution time Parallelization
processor s (sec) (sec) (sec) overhead (%)
1 2723 2723 2723 0
4 680 687 931 26.20
9 303 310 455 31.86
16 170 178 374 52.41
25 109 117 216 45.83
36 76 84 186 54.84
49 56 64 182 64.84
64 43 51 198 74.24

Among parallelization overhead,synchronizationoverheadcan be measuredusing SGIl's SpeedShop
toolset,which can determinethe time spentin synchronizatiorprimitives of MP library. This profiling
information is obtained using hardware performancecounterson MIPS R10000 processors.These
measuremerthasedexperimentswverecarriedout for BT, FT, CG, andMG usingrelatively smallnumber
of processorsRunningsuchexperimentsfor larger numberof processorsesultsin perturbationof the
actual programto a point that profiling itself becomesa significant overhead.The results of these
experimentsarereportedn Table4. Synchronizatioroverheador eachcaseis obtainedasa percentagef
measuredaxecutiontime. Synchronizatioroverheadwereashigh as19%in somecasesThe lastcolumn
liststhetotal parallelizationoverheadbtainedby subtractingneasuredxecutiontime from thetheoretical
executiontime accordingto equation(8). In two casesthis calculationis not possibledueto betterthan
expectedspeedupof CG and MG, which is a consequencef untunedsequentialversionsof these

programs as discussed in Section 4.2.

Although the measurementseportup to 19% overheaddueto synchronizationit is incorrectto assume
that synchronizationoverheadis a result of parallel loop schedulingalone. Synchronizationand data
locality overheadarestronglycorrelatedwith eachother Thetime thata masterthreadspendswaiting for
slaves to finish executing a parallel loop could be due to a combinationof two reasons;(1) time to
synchronizemultiple threadsand(2) loadimbalancebetweemmasterandsomeof the slave threadsdueto
their non-localdataaccessedf resourcecontentionfrom otherusersis also consideredthe problemof

isolating one particular type offerhead becomesen more comple

14

Table 4. Parallelization overhead for directives-based parallelized NAS benchmarks.

Theoretical Measured Measured Total
Number of | execution executiontime || synchronization | overhead
Benchmarks | processors | time(sec) (sec) overhead (sec) (sec)
BT 4 804 1053 208 (19.75%) 249 (23.65%)
9 363 444 80 (17.98%) 81 (18.24%)
FT 4 35.24 39.66 2.62 (6.6%) 4.42 (11.14%)
8 18.79 23.02 2.37 (10.3%) 4.23 (18.38%)
CG 4 12.97 14.58 2.80 (19.2%) 1.61 (11.04%)
8 7.46 4.78 0.74 (15.5%) —
MG 4 22.14 18.41 0.63 (3.4%) —
8 13.50 14.92 0.60 (4.0%) 1.42 (9.5%)

4.3.2 Analysisof Loop Synchronization Overhead

Beforereachingary conclusionsaboutparallelizationoverheadafew simpleexperimentsverecarriedout
to measuresynchronizatioroverheadfor distributing loop iterations.Codefragmentlistedin Figure5 is
usedto isolatethis overheadfrom ary otherasmuchaspossible Note thatall variablesaccessedh this
loop nestarelabeled“local”. We compiledandlinked this codewithout ary compileroptimizationflags.
This guaranteethatall dataaccessem parallelizedioopsarefrom first level of cacheswithout any non-
local accessedMultiple SpeedShoprofiling experimentswith this codewereexecutedon 4, 8, 9, and 16

processors.

integer i, j, k|
double precision uo, ul

uo=1.0
ul=1.0
c$doacross local(i,j,k,I,u0,ul)
dol=1, 128
dok=1,128
doj=1,128
doi=1, 128
u0 =ul+l
end do
end do
end do
enddo

end

Figure 5. A synthetic program to analyze the synchronization overhead for directives-based parallelized
programs.

15

Figure6 presentshe experimentakesults Eachbarrepresentsneasuredynchronizatioroverheador one
executionof the program.The total executiontime for four processorss aboutl.2 secondswhich scales
linearly with increasinghumberof processorsThis is consistentvith the expectedbehaior dueto avery
simple program.The overheadmeasurementare consistentfor smallernumberof processoshoving a
variationin the rangeof 6%—19%.The 16 processocaseshows largeroverheadecauset is presentecs
a fraction of total executiontime, which is very smallin this case.Although we tried to ensurethat data
locality overheaddoesnot affect the measurementsye cannotisolate the overheaddue to resource

contention from other users.

35

250 .

20 q

15 b

10 b

Synchronization overhead (%)

0 I I I
4 8 9 16

Number of processors

Figure 6. Synchronization overhead for the synthetic loop nest.

Based on the results reported in this subsectianctwclusions can be dva:

1. Assuminga properlytunedsequentialversionof a programto calculateaccuratevaluesof theoretical
speedup, it is possible to calculate the agape\alue of parallelizationwerhead.

2. ltis impractical to quantitately isolate the impact of ddrent sources of parallelizationarhead.

Calculationof aggreyate parallelizationoverheadusing the performancemodel of Section3 provides
usefulinformationto the user A high value of this overheaddespitenearideal parallelcoverage almost
certainly indicatesa memory performancebottleneck.Parallelizationoverheadon a cache-base@®SM

systemwill continueto reduceas most of the datais placedclosestto the processorin the available

memory hierarch

16

4.4 Compar ative Performance Analysis

NAS benchmarkswere originally written as a suite of paperand-pencilbenchmarksto allow high-
performanceomputingsystemvendorsandresearchert develop their own implementationgo evaluate
specific architecturesof their interest [5]. NAS also provides a hand-parallelizedmessage-passing
implementationof the benchmark$asedon MPI message-passinirary [14]. This implementationis
carefully written and optimized for a majority of existing high performancecomputing platforms.
Therefore,we comparethe performanceof our directve-basedmplementationagainst the MPI-based
hand-parallelizedmplementationlt shouldbe noticedthat an MPI-basedimplementatiordiffers from a

directives-based shared-memory implementation of the same program impartant respects:

1. programruns under Single Program,Multiple Data (SPMD) paradigmand sharesdatawith explicit
message-passing among multiple processes; and

2. datais distributedsuchdifferentprocessorsown” differentelementsof anarrayaccordingto the type
of distribution.

In contrast,shared-memoryparallelizedprogramsare executedunder a fork-and-join paradigmwith a
globaladdresspace Additionally, datadistribution directivesresultin the ownershipof differentpagesof

data (arrays) by diérent processors, in contrast to tiwenership of specific elements of an array

Figure7 presentshe comparisorbetweerdirectives-basegarallelizedbenchmarksindhand-parallelized,
MPI-basedversionsof the same.In all of these cases,performanceimproves with the number of
processorsFor BT and FT, the MPI-basedimplementationsperform slightly better than the shared-
memoryimplementatiordueto dataplacementDirectives-basedlatadistribution resultsin placingpages
of arrayson multiple processorsCoarsegranularityof datadistribution startsbecominga bottleneckfor
larger numberof processordecausall loop iterationsthat usea particulardataelementcannotbe co-
locatedat the samenode. Therefore,asthe numberof processorsncreasesmultiple processordiave to
accesgslatafrom pageghatthey do not own locally, which adwerselyimpactthe overall executiontime. In
contrast,a message-passingogramis designedn a way thatthe programmercontrolslocality of every
dataelement.As the numberof processorsncreasesthe amountof dataownedby a processoreduces
proportionately This is a particularly favorable situationfor a cache-base®SM systembecausdarger
proportionsof local datacanresidein cachego enhancenemorysystemperformanceWe tunedBT’s data
locality for almostall of the parallelizedoopsto ensurehateachloop iterationis scheduledta processor
that owns elementsof an array accessediuring thoseiterations.Consequentlythe performanceof BT is

comparabldo its hand-parallelizedmplementationPerformancef two implementation®f CG andMG

17

is also comparablgseeFigure 7 (c) and(d)). In caseof CG and MG, datalocality doesnot becomea
bottleneckdueto comparatiely smallersizeof codewith smallernumberof memoryaccessesl herefore,

performance remains comparable with the hand-parallelized implementations of CG and MG.

x—Directive-parallelized
o—Hand-parallelized

3500 T T T T T T 140
3000 - - 120}
o
(] 2500 %\ 100
< 2
]
£ 2000 g sl
E =
o c
g soor g 60
S 3
X Q
L 1000f I.I>j 401
500 - e 20k
00 10 20 30 40 50 60 70 00 .% 1‘0 1‘5 2‘0 2‘5 3‘0 35
Number of processors Number of processors
(@ BT (b) FT
50 T T T T T T T 80
451
701
— 40F
) —
O 60
[} 50
£ 3op Q
= £
25 c 40f
2 S
5 | =
8 20 8 0L
x &
Lu 15+
w 20
10
sl 10-
o 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Number of processors Number of processors
(c) CG (d)MG

Figure 7. Performance comparison of shared-memory multiprocessing directives-based parallelization
with M PI-based, hand-parallelized and -optimized ver sions of the same benchmarks.

4.5 Summary of Performance Evaluation

As a first stepin evaluationprocessthe parallel coverageof eachparallelizedprogramwas determined.
Despiteabore 90% parallel coveragein all casesprogramscannotachieve closeto ideal or theoretical
speedupdue to parallelizationoverhead.Our extensive experimentsindicate that a useful quantitatve
measureof parallelizationoverheads obtainedby the performancanodelpresentedn this paper which
calculatesaggregate overheadwithout trying to isolate different types of overhead.Basedon our

experiencewith performancetuning describedhere, we concludethat parallelizationoverheadcan be

18

significantlyreducedoy improving datalocality. Superiorspeedupmf message-passirigplementatiorof

same benchmarks due to imped data locality supports this conclusion.

5 Reated Work

Recentperformancesvaluationstudieshave examinedthe effect of datalocality on the performanceof
DSM systemsAndersorreportsthatoverheador programghatwereparallelizedwith nearl00%parallel
coverageand executedon StanfordDASH (a ccNUMA DSM system)resultedin significantly inferior
speedupcharacteristicg4]. Performancenas improved by analyzingdatadistribution. In our case,we
concludethat single processorcacheperformanceas anotherkey factorthat canimprove performancein
additionto appropriatedatadistribution. Hristeaet al presentheresultsof seseral experimentgo evaluate

the performance of memory subsystem for ccNUMA systems [8].

Sereral research efforts have focused on parallelizing sequential programs for shared-memory
multiprocessorsTheseefforts are becomingincreasinglyimportantdueto the revival of shared-memory
multiprocessorsvith improved scalability via distributed memoryand hardware cache-coherenc&UIF
compiler systemincorporatesvarious modulesthat can be usedto analyzethe sequentialprogram,
parallelizethe loops, distribute programarrays,and perform inter-proceduralanalysis[3,4]. Polarisis
anotherparallelizingcompilerthat cangenerategparallelizedcodefor SMPs[16,18]. CAPToolsis a semi-
automatigparallelizationtool thattransformsa sequentiaprogramto a message-passirgyogramby user
directeddistribution of arrays[9]. Fortran-D[1] andvariousimplementation®f High Performancé-ortran
(HPF[6]) areexamplesof parallelizingcompilersthatwork for sequentiaprogramshat canbenefitfrom
dataparallelism.KAP [10] andPFA [13] areexamplesof commercialparallelizationtools for SMPs.We
have experimentedwith most of thesetools to parallelize sequentiaNAS benchmarksBasedon this
experienceandresultsreportedin this paper we considerthattoolsfor SMPsaresimpleto learnanduse

and their performance is promising.

6 Discussion and Conclusions

Directives-basegbarallelismis essentiallya fine-grainedparallelismthat works at the level of individual
loopiterations.Thisis fundamentaliydifferentfrom corventionalcoarse-grainegarallelismat the level of
processesr threadsWhenit is implementedarefully, it canobtainmuchbetterload-balanceomparedo
the corventionalmessage-passimy data-parallekechniquesOn the other hand,the useris requiredto

spend additional time to ensure proper data locality to obtain performancecomparableto hand-

19

parallelized, message-passing based implementation.

We presenteda performancemodel to characterizethe performanceof directives-basedparallelized
programgor anOrigin2000systemUsing measurementsye quantitatvely evaluatedthe fraction of code
thatwasparallelized Furtherevaluationindicatedreasonablepeedummswell assignificantparallelization
overheadBasedon extensie tuning of oneparallelizedorogramandsomeisolatedexperimentgresented
in this paper we concludethat non-localdataaccessesre the main sourceof parallelizationoverhead.
Performancecan be optimized by keepingdataat a level in memory hierarcly, which is closerto the

processarBased on these results, we continue to further tune parallel&8déhchmarks.

Evaluationof parallelizationoverheadbasedn performancenodelpresentedn this paperemphasizethe
needfor appropriaténstrumentatiorof multiprocessomemorysubsystemSuchinstrumentations readily
accessiblgo a userfor measurementémited to a single nodeonly. Without hardware or software based
instrumentatiorof non-localmemoryaccessesind cache-coherenceaffic, direct measurementf data
locality overheads not possible. Somecommercialtool developersrealizethis problemandareworking

on tools that furnish multiprocessor memory performance measurements.

References

[1] V. Adve, J-C.Wang,J. Mellor-Crumme, D. Reed,M. Anderson,andK. Kennedy“An Integrated
Compilationand PerformanceAnalysis Ervironmentfor Data Parallel Programs, Proceedingsof
Supecomputing ‘95 San Digo, CA, December 1995.

[2] SamanP. Amarasinghe;Parallelizing Compiler TechniqguesBasedon Linear Inequalities, Ph.D.
Dissertation, Dept. of Electrical Eng., Stanford \émsity, Jan. 1997.

[3] S.P. Amarasinghe]).M. AndersonM. S.LamandC. W. Tseng,The SUIF Compilerfor Scalable
ParallelMachines, Proceeding®f the Fifth ACM SIGPLANSymposiunon Principlesand Practice
of Parallel ProcessingJuly, 1995.

[4] JenniferAnn M. Anderson,' AutomaticComputatiorandDataDecompositiorfor Multiprocessors,
TechnicalReport CSL-TR-97-719,Computer SystemsLaboratory Dept. of Electrical Eng. and
Computer Sc., Stanford U@rsity, 1997.

[5] David Bailey, Tim Harris, William Saphir Robvan derWijngaart,Alex Woo, andMaurice Yarraw,
“The NAS PRarallel Benchmark 2.0Technical Report NS-95-020, December 1995.

[6] High Performancd-ortranForum. High Performancd-ortran LanguageSpecificationVersion1.0.
Scientific Programming, 2(1 & 2), 1993.

[71 Mark Horowitz, MargaretMartonosi,Todd. C. Mowry, andMichael D. Smith, “Informing Memory
OperationsProviding Memory Performancd-eedbackn ModernProcessors,Proceedingsof the
23rd Annual International Symposium on Computeshitectuie, May 1996.

20

[8]

[9]

[10]

[11]

[12]
[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

Cristina Hristea, Daniel Lenoski,and JohnDeen,“MeasuringMemory Hierarcty Performanceof
Cache-CoherentlultiprocessordJsingMicro benchmark$,Proceedingof SC'97, SanJose Cali-
fornia, Nov. 1997.

C. S. lerotheou,S. P. JohnsonM. Cross,andP. F. Leggett“Computeraided parallelisationtools
(CAPTools)—conceptualovervien and performanceon the parallelisationof structuredmesh
codes”Parallel Computing Vol.22, 1996, pp.163-195.

Kuck & Associates)nc., “ExperiencesWith Visual KAP and KAP/Pro ToolsetUnder Windows
NT,” Technical Report, No 1997.

James_audonand Daniel Lenoski,“The SGI Origin: A ccNUMA Highly ScalableSener,” Pro-
ceedingf the 24th Annuallnternational Symposiunen ComputerArchitecture, Derver, Colorado,
June 2-4, 1997, pp. 241-251.

Message &ssing Inteidice orum, “MPI: A Message-&ssing Intedce StandardMay 5, 1994.

MIPSpio Fortran77Programmers Guide Silicon Graphics)nc. Availableon-linefrom: http://tech-
pubs.sgi.com/library/dyneeb bin/0640/bin/nph-dymeehcgi/dynaveb/SGI_Deeloper/
MproF77_PG/@Generic__Boola.

NAS Parallel Benchmarks. Vailable on-line from: http://science.nas.nasa/§oftware/NPB.

OpenMP:A ProposedStandad API for Shaed MemoryProgramming Oct. 1997.Availableon-line
from http://wwwopenmp.ag.

David A. Padua,Rudolf EigenmannJayHoeflinger Paul PetersenPengTu, StepherWeatherford,
andKeith Faigin, “Polaris: A New-GeneratiorParallelizingCompilerfor MPPS; TechnicalReport
CSRD # 1306, Unersity of lllinois at Urbana-Champaign, June 15, 1993.

CherriM. Pancale, “The EmperorHasNo Clothes:WhatHPCUsersNeedto SayandHPCVendors
Need to Hegl, Supecomputing ‘95invited talk, San Digo, Dec. 3-8, 1995.

InsungPark, MichaelJ. Voss,andRudolf Eigenmann;Compiling for the New Generatiorof High-
Performance SMP'sTechnical Report, No 1996.

Harvey J. WassermanrQlaf M. Lubeck,YongLuo, andFedericoBassetti,'PerformanceEvaluation
of the SGI Orign2000:A Memory-CentricCharacterizatiomf LANL ASCI Application] Proceed-
ings of SC ‘97San Jose, California, N01997.

MarcoZagha,BrondLarson,Steve Turnetr Marty Itzkowitz, “PerformanceAnalysisUsingthe Mips
R10000 PerformanceCounters, Proceedingsof Supecomputing‘96, Pittskurgh, Pennsylania,
Nov. 1996.

21

NAS TECHNICAL REPORT

Title:

Perfor mance M odeling and M easurement of
Parallelized Code for Distributed Shared

Author(s):
Abdul Waheed and Jerry Yan

Two reviewers

Reviewers:

“I have carefully and thoroughly reviewed
this technical report. I have worked with the
author(s) to ensure clarity of presentation and
technical accuracy. I take personal responsi-
bility for the quality of this document.”

must sign. Signed:
Name: _H. Jin
Signed:
Name: _M. Hribar
After approval, c I
assign KII?AS BranCh Chlef .
Report number.
Approved:
Date: NAS ReportNumber:

NAS-98-012

